Theoretical Reims-Tomsk Spectral data

Guest   |  

Theory and Methods

  1. Eckart, C., 1934, The kinetic energy of polyatomic molecules, Phys. Rev., 46 (5), 383--387.
  2. Crawford Jr., B.L., Fletcher, W.H., 1951, The determination of normal coordinates [18], J. Chem. Phys., 19 (1), 141--142.
  3. Louck, J.D., Shaffer, W.H., 1960, Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator. Part I. The twofold degenerate oscillator, J. Mol. Spectrosc., 4 (1-6), 285--297.
  4. Louck, J.D., 1960, Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator. Part III. Radial integrals, J. Mol. Spectrosc., 4 (1-6), 334--341.
  5. Louck, J.D., 1965, Group theory of harmonic oscillators in n-dimensional space, J. Math. Phys., 6 (11), 1786--1804.
  6. Watson, J.K.G., 1968, Simplification of the molecular vibration-rotation hamiltonian, Mol. Phys., 15, 479--490.
  7. Hoy, A.R., Mills, I.M., Strey, G., 1972, Anharmonic force constant calculations, Mol. Phys., 24, 1265--1290.
  8. Louck, J.D., 1976, Derivation of the molecular vibration-rotation Hamiltonian from the Schrödinger equation for the molecular model, J. Mol. Spectrosc., 61 (1), 107--137.
  9. Bykov, A.D., Makushkin, Y., Ulenikov, O.N., 1981, On isotope effects in polyatomic molecules. Some comments on the method, J. Mol. Spectrosc., 85 (2), 462--479.
  10. Halonen, L., Child, M.S., 1982, A local mode model for tetrahedral molecules, Mol. Phys., 46, 239--255.
  11. Perevalov, V.I., Tyuterev, V., 1982, Reduction of the centrifugal distortion Hamiltonian of asymmetric top molecules in the case of accidental resonances: Two interacting states. Lower-order terms, J. Mol. Spectrosc., 96 (1), 56--76.
  12. Perevalov, V.I., Tyuterev, V.G., 1982, Model with uniquely deducible parameters for the combined analysis of two resonating vibrational states. Anharmonic resonances in molecules of asymmetric-gyroscope type, Sov. Phys. J., 25 (2), 179--182.
  13. Perevalov, V.I., Tyuterev, V., Zhilinskii, B.I., 1982, SPECTROSCOPIC CONSTANTS OF SPHERICAL TOP MOLECULES. q**2J**2 AND q**2J**3 TERMS FOR INTERACTING STATES 1000, 0010 AND 0100, 0001 OF AB//4 MOLECULES., J. Phys. Paris, 43 (5), 723--728.
  14. Perevalov, V., Tyuterev, V., 1982, , Optika I Spektroskopiya , 52 (4), 644--650.
  15. Halonen, L., Child, M.S., 1983, Local mode theory for C_3v molecules: CH_3D, CHD_3, SiH_3D, and SiHD_3, J. Chem. Phys., 79 (9), 4355--4362.
  16. Zhilinskii, B.I., 1983, Theoretical models of the spectra of highly symmetrical molecules, J. Struct. Chem., 24 (2), 255--258.
  17. Perevalov, V.I., Tyuterev, V., Zhilinskii, B.I., 1984, Ambiguity of spectroscopic parameters in the case of accidental vibration-rotation resonances in tetrahedral molecules. r^2J and r^2J^2 terms for E-F_2 interacting states, Chem. Phys. Lett., 104 (5), 455--461.
  18. Pavlichenkov, I.M., Zhilinskii, B.I., 1985, Rotation of molecules around specific axes: Axes reorientation under rotational excitation, Chem. Phys., 100 (3), 339--354.
  19. Perevalov, V.I., Tyuterev, V., Zhilinskii, B.I., 1985, Reduced Hamiltonian for 0100 and 0001 interacting states of tetrahedral XY_4 molecules: Calculated r^2J^2 and r^2J^4-type parameters for _2 and _4 bands of methane, J. Mol. Spectrosc., 111 (1), 1--19.
  20. Aliev, M.R., Mikhailov, V.M., Watson, J.K.G., 1986, Higher order dipole moments for pure rotational transitions of methane-type molecules, J. Mol. Spectrosc., 118 (2), 544--547.
  21. Sutcliffe, B.T., Tennyson, J., 1987, Variational methods for the calculation of rovibrational energy levels of small molecules, J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys., 83 (9), 1663--1674.
  22. Pavlov-Verevkin, V.B., Zhilinskii, B.I., 1988, Effective Hamiltonians for vibrational polyads: Integrity bases approach, Chem. Phys., 126 (2-3), 243--253.
  23. Thiel, W., 1989, Nonlinear transformation of anharmonic normal coordinate force constants, Mol. Phys., 68, 427--432.
  24. Champion, J.P., Loëte, M., Pierre, G.,Weber, K.N.R.A., (1992), Spherical Top Spectra, San Diago: Academic Press.
  25. Brodersen, S., Zhilinskii, B.I., 1995, The Rotational Structure of the Vibrational States and Substates of Symmetry E in CF_4, J. Mol. Spectrosc., 172 (2), 303--318.
  26. Bunker, P.R., Jensen, P., (1998), Molecular Symmetry and Spectroscopy, Ottawa: NRC-CNRC.
  27. Bunker, P.R., Jensen, P., 1999, Spherical top molecules and the molecular symmetry group, Mol. Phys., 97 (1-2), 255--264.
  28. Carter, S., Bowman, J.M., 2000, Variational calculations of rotational - Vibrational energies of CH_4 and isotopomers using an adjusted ab initio potential, J. Phys. Chem. A, 104 (11), 2355--2361.
  29. Wang, X.G., Carrington Jr., T., 2001, Symmetry-adapted Lanczos method for calculating energy levels with different symmetries from a single set of iterations, J. Chem. Phys., 114 (4), 1473--1477.
  30. Chen, J.-Q., Ping, J., Wang, F., (2002), Group representation theory for physicists, Singapore: World Scientific, second edition.
  31. Bowman, J.M., Carter, S., Huang, X., 2003, MULTIMODE: A code to calculate rovibrational energies of polyatomic molecules, Int. Rev. Phys. Chem., 22 (3), 533--549.
  32. Carrington Jr., T., 2004, Methods for calculating vibrational energy levels, Can. J. Chem., 82 (6), 900--914.
  33. Czakó, G., Furtenbacher, T., Császár, A.G., Szalay, V., 2004, Variational vibrational calculations using high-order anharmonic force fields, Mol. Phys., 102 (23-24), 2411--2423.
  34. Efstathiou, K., Sadovskii, D.A., Zhilinskii, B.I., 2004, Analysis of rotation-vibration relative equilibria on the example of a tetrahedral four atom molecule, SIAM J. Appl. Dyn. Syst., 3 (3), 261--351.
  35. Bowman, J.M., Carter, S., Handy, N.C., (2005), Progress in the quantum description of vibrational motion of polyatomic molecules.
  36. Yurchenko, S.N., Carvajal, M., Jensen, P., Lin, H., Zheng, J., Thiel, W., 2005, Rotation-vibration motion of pyramidalNH_3 molecules described in the Eckart frame: Theory and application to NH_3, Mol. Phys., 103 (2-3), 359--378.
  37. Mátyus, E., Czakó, G., Sutcliffe, B.T., Császár, A.G., 2007, Vibrational energy levels with arbitrary potentials using the Eckart-Watson Hamiltonians and the discrete variable representation, J. Chem. Phys., 127 (8), 084102.
  38. Yurchenko, S.N., Thiel, W., Jensen, P., 2007, Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of rovibrational energies for polyatomic molecules, J. Mol. Spectrosc., 245 (2), 126--140.
  39. Ovsyannikov, R.I., Thiel, W., Yurchenko, S.N., Carvajal, M., Jensen, P., 2008, Vibrational energies of PH_3 calculated variationally at the complete basis set limit, J. Chem. Phys., 129 (4), 044309.
  40. Ovsyannikov, R.I., Thiel, W., Yurchenko, S.N., Carvajal, M., Jensen, P., 2008, PH_3 revisited: Theoretical transition moments for the vibrational transitions below 7000 cm- 1, J. Mol. Spectrosc., 252 (2), 121--128.
  41. Wenger, C., Champion, J.P., Boudon, V., 2008, The partition sum of methane at high temperature, J. Quant. Spectrosc. Radiat. Transf., 109 (16), 2697--2706.
  42. Avila, G., Carrington, T., 2009, Nonproduct quadrature grids for solving the vibrational Schrödinger equation, J. Chem. Phys., 131 (17), 174103.
  43. Avila, G., Carrington Jr., T., 2011, Using nonproduct quadrature grids to solve the vibrational Schrödinger equation in 12D, J. Chem. Phys., 134 (5), 054126.
  44. Avila, G., Carrington Jr., T., 2011, Using a pruned basis, a non-product quadrature grid, and the exact Watson normal-coordinate kinetic energy operator to solve the vibrational Schrdinger equation for C2H_4, J. Chem. Phys., 135 (6), 064101.
  45. Avila, G., Carrington, T., 2012, Solving the vibrational Schrödinger equation using bases pruned to include strongly coupled functions and compatible quadratures, J. Chem. Phys., 137 (17), 174108.
  46. Avila, G., Cooper, J., Carrington, T., 2012, Using pruned basis sets to compute vibrational spectra, AIP Conference Proceedings, 925--927.
  47. Carter, S., Bowman, J.M., Handy, N.C., 2012, Multimode calculations of rovibrational energies of C2H4 and C2D4, Mol. Phys., 110 (9-10), 775--781.
  48. Carter, S., Sharma, A.R., Bowman, J.M., 2012, First-principles calculations of rovibrational energies, dipole transition intensities and partition function for ethylene using MULTIMODE, J. Chem. Phys., 137 (15), 154301.
  49. Carter, S., Bowman, J.M., Sharma, A.R., 2012, The 'MULTIMODE' approach to ro-vibrational spectroscopy, AIP Conference Proceedings, 465--466.
  50. Tennyson, J., Yurchenko, S.N., 2012, ExoMol: Molecular line lists for exoplanet and other atmospheres, Mon. Not. R. Astron. Soc., 425 (1), 21--33.
  51. Avila, G., Carrington Jr., T., 2013, Solving the Schroedinger equation using Smolyak interpolants, J. Chem. Phys., 139 (13), 134114.
  52. Tennyson, J., Hill, C., Yurchenko, S.N., 2013, Data structures for ExoMol: Molecular line lists for exoplanet and other atmospheres, AIP Conference Proceedings, 186--195.
  53. Yurchenko, S.N., Tennyson, J., Barber, R.J., Thiel, W., 2013, Vibrational transition moments of CH_4 from first principles, J. Mol. Spectrosc., 291, 69--76.
  54. Sousa-Silva, C., Hesketh, N., Yurchenko, S.N., Hill, C., Tennyson, J., 2014, High temperature partition functions and thermodynamic data for ammonia and phosphine, J. Quant. Spectrosc. Radiat. Transf., 142, 66--74.
  55. Tennyson, J., Yurchenko, S.N., 2014, Spectra of hot molecules of astrophysical importance: An update on the ExoMol project, Proc. Int. Astron. Union, 9 (S297), 330--338.
  56. Yurchenko, S.N., Tennyson, J., 2014, ExoMol line lists-IV. The rotation-vibration spectrum of methane up to 1500 K, Mon. Not. R. Astron. Soc., 440 (2), stu326.