Theoretical Reims-Tomsk Spectral data

Guest   |  

PES/DMS surfaces

  1. Hollenstein, H., Marquardt, R., Quack, M., Suhm, M., 1994, Dipole moment function and equilibrium structure of methane in an analytical, anharmonic nine-dimensional potential surface related to experimental rotational constants and transition moments by quantum Monte Carlo calculations, J Chem Phys, 101 (5), 3588-3602.
  2. Martin, J., Lee, T., Taylor, P., Francois, J.-P., 1995, The anharmonic force field of ethylene, C2H4, by means of accurate ab initio calculations, J. Chem. Phys., 103 (7), 2589-2602.
  3. Partridge, H., Schwenke, D.W., 1997, The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data, J. Chem. Phys., 106 (11), 4618--4639.
  4. Marquardt, R., Quack, M., 1998, Global analytical potential hypersurfaces for large amplitude nuclear motion and reactions in methane. I. Formulation of the potentials and adjustment of parameters to ab initio data and experimental constraints, J. Chem. Phys., 109 (24), 10628--10643.
  5. Schwenke, D.W., Partridge, H., 2001, Vibrational energy levels for CH_4 from an ab initio potential, Spectrochim. Acta - Part Mol. Biomol. Spectrosc., 57 (4), 887--895.
  6. Marquardt, R., Quack, M., 2004, Global Analytical Potential Hypersurface for Large Amplitude Nuclear Motion and Reactions in Methane II. Characteristic Properties of the Potential and Comparison to Other Potentials and Experimental Information, J. Phys. Chem. A, 108 (15), 3166--3181.
  7. Yurchenko, S.N., Carvajal, M., Thiel, W., Jensen, P., 2006, Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH_3, J. Mol. Spectrosc., 239 (1), 71--87.
  8. Nikitin, A.V., Holka, F., Tyuterev, V.G., Fremont, J., 2009, Vibration energy levels of the PH_3, PH2D, and PHD2 molecules calculated from high order potential energy surface, J. Chem. Phys., 130 (24), 244312.
  9. Yurchenko, S.N., Yachmenev, A., Thiel, W., Baum, O., Giesen, T.F., Melnikov, V.V., Jensen, P., 2009, An ab initio calculation of the vibrational energies and transition moments of HSOH, J. Mol. Spectrosc., 257 (1), 57--65.
  10. Szalay, P.G., Holka, F., Fremont, J., Rey, M., Peterson, K.A., Tyuterev, V.G., 2011, Are ab initio quantum chemistry methods able to predict vibrational states up to the dissociation limit for multi-electron molecules close to spectroscopic accuracy?, Phys. Chem. Chem. Phys., 13 (9), 3654--3659.
  11. Huang, X., Schwenke, D.W., Tashkun, S.A., Lee, T.J., 2012, An isotopic-independent highly accurate potential energy surface for CO_2 isotopologues and an initial ^12C^16O_2 infrared line list, J. Chem. Phys., 136 (12), 124311.
  12. Cassam-Chena, P., Liévin, J., 2013, An improved third order dipole moment surface for methane, J. Mol. Spectrosc..
  13. Nikitin, A.V., Rey, M., Tyuterev, V.G., 2013, New dipole moment surfaces of methane, Chem. Phys. Lett., 565, 5--11.
  14. Sousa-Silva, C., Yurchenko, S.N., Tennyson, J., 2013, A computed room temperature line list for phosphine, J. Mol. Spectrosc., 288 (1), 28--37.
  15. Delahaye, T., Nikitin, A.V., Rey, M., Szalay, P.G., Tyuterev, V.G., 2014, A new accurate ground-state potential energy surface of ethylene and predictions for rotational and vibrational energy levels, J. Chem. Phys., 141, 104301.
  16. Nikitin, A.V., Rey, M., Tyuterev, V.G., 2014, High order dipole moment surfaces of PH_3 and ab initio intensity predictions in the Octad range, J. Mol. Spectrosc., 305, 40--47.
  17. Delahaye, T., Nikitin, A., Rey, M., Szalay, P., Tyuterev, V., 2015, Accurate 12D dipole moment surfaces of ethylene, Chem. Phys. Letters, 639, 275-282.